Abstract

In this paper, a new path planning method is proposed to resolve the problem of two-dimensional terrain following flight of flying robots in mountainous regions. The performance criteria considered for this mission design could include either the minimum vertical acceleration or the minimum flying time. To impose the terrain following/terrain avoidance constraints, various approaches such as least square method, Fourier series method, Gaussian estimation method, and Chebyshev orthogonal polynomial are explored. The resulting optimal control problem is discretized by employing a numerical technique namely direct collocation and then transformed into a nonlinear programming problem. The efficacy of the proposed method is demonstrated by extensive simulations, and particularly, it has been verified that this method is able to produce a solution that satisfies all hard constraints of the underlying problem.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.