Abstract

We develop a path-based approach to continuous-time random walks on networks with arbitrarily weighted edges. We describe an efficient numerical algorithm for calculating statistical properties of the stochastic path ensemble. After demonstrating our approach on two reaction rate problems, we present a biophysical model that describes how proteins evolve new functions while maintaining thermodynamic stability. We use our methodology to characterize dynamics of evolutionary adaptation, reproducing several key features observed in directed evolution experiments. We find that proteins generally fall into two qualitatively different regimes of adaptation depending on their binding and folding energetics.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.