Abstract

AbstractElevated pore fluid pressure is proposed to contribute to slow earthquakes along shallow subduction plate boundaries. However, the processes that create high fluid pressure, disequilibrium compaction and dehydration reactions, lead to different effective stress paths in fault rocks. These paths are predicted by granular mechanics frameworks to lead to different strengths and deformation modes, yet granular mechanics do not predict their effects on fault stability. To evaluate the role of fluid overpressure on shallow megathrust strength and slip behavior, we conducted triaxial shear experiments on chlorite and celadonite rich gouge layers. Experiments were conducted at constant temperature (130 and 100°C), confining pressure (130 and 140 MPa), and pore fluid pressures (between 10 and 120 MPa). Fluid overpressure due to disequilibrium compaction was simulated by increasing confining and pore fluid pressure synchronously without exceeding the target effective pressure, whereas overpressure due to dehydration reactions was simulated by first loading the sample to a target isotropic effective pressure and then increasing pore fluid pressure to reduce the effective pressure. We find that the effects of fluid pressure and stress path on the mechanical behavior of the chlorite and celadonite gouges can generally be described using the critical state soil mechanics (CSSM) framework. However, path effects are more pronounced and persist to greater displacements in chlorite because its microstructure is more influenced by stress path. Due to its effects on microstructure, the stress path also imparts greater control on the rate‐dependence of chlorite strength, which is not predicted by CSSM.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.