Abstract

To investigate the characteristics of grape transpiration water consumption and its environmental coupling mechanism in a greenhouse growing environment in cold areas of Northeast China, the dynamic monitoring of greenhouse grape sap flow and microenvironmental factors in a greenhouse was carried out for two years. Correlation analysis and path analysis were used to study the characteristics of grape transpiration environmental factors at different temporal scales (instantaneous, daily, and growth period) and the influence mechanisms on greenhouse grape transpiration. The results of correlation analysis by growth period showed that, on the instantaneous scale, the correlation between each meteorological factor and grape transpiration reached a significant level (coefficient of determination R2 ranged from 0.25 to 0.84). On the daily scale, the correlation of solar radiation (Rs) was the best except for the new growth period (R2 ranged from 0.49 to 0.89). The results of the split-fertility path analysis showed that the total effects of Rs on instantaneous transpiration were the largest at all stages of fertility, with decision coefficients (R) ranging from 0.69 to 0.90. On the daily scale, the total and direct effects of Rs on daily transpiration were the largest (R ranged from 0.70 to 0.94), except for the new growth period. The results of the whole growth period path analysis showed that Rs had the greatest effect on instantaneous transpiration, with R of 0.86. On the daily scale, Rs was also the most influential factor in grape transpiration, with R of 0.81. On the growth period scale, only air temperature (Ta) and leaf area index (LAI) were significantly correlated with transpiration (p < 0.05), and Rs had the largest total effect on transpiration with R of 0.68. To sum up, on each time scale, Rs was always the most important factor influencing grape transpiration. However, as the time scale increased, the effects of LAI and soil water content (SW) on transpiration increased while the effects of Rs, Ta, RH, and VPD on transpiration gradually decreased.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.