Abstract
In this work, novel multifunctional patchy gold coated Fe3O4 hybrid nanoparticles (PG-Fe3O4 NPs) have been successfully synthesized in aqueous medium via a facile adsorption-reduction method. A rational formation mechanism has been proposed by monitoring the morphological evolution. The PG-Fe3O4 NPs retained the good magnetic property and exhibited excellent catalytical effeciency towards the electrochemical reduction of hydrogen peroxide. Chronoamperometric and amperometric experiments indicated a relatively high catalytic rate constant of 3.13 × 105 M−1 s−1, a high sensitivity of 578.87 µA mM−1 cm−2 and a low Michaelis-Menten constant of 462 µM. Meanwhile, the introduction of patchy gold could help biofunctionalization via Au-S bond for different biodetection and biosensing purposes. Here, as an example, thiol-terminated aptamers were immobilized onto the patchy gold part as a signal probe to detect carcinoembryonic antigen (CEA). A related paper-based bipolar electrode-electrochemiluminescence (pBPE-ECL) aptasensor was fabricated as the low-cost, disposable and miniature platform. To improve the sensitivity, Au nanodendrites were electrodeposited at the BPE cathode as the matrix for Apt1 immobilization. This aptasensor showed a wide linear range of 0.1 pg mL−1–15 ng mL−1 with a low detection limit of 0.03 pg mL−1, remaining competitive against other ones, and also demonstrating the PG-Fe3O4 NPs have promising potential for catalysis and bioassays.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.