Abstract
We consider and contrast two mechanisms for the production of spatial pattern in an excitable medium model for plankton populations. The first is Turing or diffusion-driven instability. We find that, since in a turbulent environment the effective diffusivities of phytoplankton and zooplankton are similar, this mechanism is unlikely to produce observable spatial pattern in the ocean. The second mechanism is spatially varying forcing of the system. In order to display the sensitivity to small spatial variation in forcing, we consider the dynamics of an ordinary differential equation system with spatial perturbations to parameters and initial conditions. In the absence of diffusion the excitable nature of the system means that small perturbations can produce very sharp spatial structures, when diffusion is introduced, we find that this patchiness can persist on realistic scales.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.