Abstract
The capacities of epilithic and planktonic river bacterial populations to degrade sodium dodecyl sulfate (SDS) in samples taken at two times during 1987 from one clean and four polluted sites in a South Wales river were estimated in die-away tests under simulated environmental conditions. There was a relatively slow disappearance of SDS in die-away tests for both planktonic and epilithic populations taken from the clean source site, as compared with those taken from the downstream polluted sites, for which the rate of biodegradation was accelerated, sometimes after an apparent initial lag period. The kinetic components contributing to the die-away curves were quantified by nonlinear regression analysis in which the experimental data were fitted to a variety of possible kinetic models. All samples except for one from the polluted sites best fitted a model which describes the biodegradation of SDS at concentrations well below its K(m) by bacteria whose growth is exponential and unaffected by the addition of a test substrate. Each sample from the clean source site fitted a different model, but there was generally little or no growth on endogenous carbon. A consideration of the numerical values of constants derived from the modeling of epilithic and planktonic populations from polluted sites indicated clearly that the biodegradative capacity of epilithic bacterial populations towards SDS is more stable than that of planktonic bacterial populations.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.