Abstract

Smaller physical size and wider bandwidth are two antenna engineering goals of great interest in the wireless world. To this end, the concept of external substrate perforation is applied to patch antennas in this paper. The goal was to overcome the undesirable features of thick and high dielectric constant substrates for patch antennas without sacrificing any of the desired features, namely, small element size and bandwidth. The idea is to use substrate perforation exterior to the patch to lower the effective dielectric constant of the substrate surrounding the patch. This change in the effective dielectric constant has been observed to help mitigate the unwanted interference pattern of edge diffraction/scattering and leaky waves. The numerical data presented in this paper were generated using the finite-difference time-domain (FDTD) technique. Using this numerical method, a patch antenna was simulated on finite-sized ground planes of two different substrate thicknesses, with and without external substrate perforation. The computations showed the directivity drop in the radiation pattern caused by substrate propagation was noticeably improved by introducing the substrate perforation external to the patch for the case of a patch antenna on a relatively thick substrate without any loss of bandwidth. Measurements of a few patch antennas fabricated on high dielectric constant substrates with and without substrate perforation are included for completeness. Good correlation between the computed results and measurements is observed.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.