Abstract

Micro-expressions (MEs) play such an important role in predicting a person's genuine emotions, as to make micro-expression recognition such an important resea rch focus in recent years. Most recent researchers have made efforts to recognize MEs with spatial and temporal information of video clips. However, because of their short duration and subtle intensity, capturing spatio-temporal features of micro-expressions remains challenging. To effectively promote the recognition performance, this paper presents a novel paralleled dual-branch attention-based spatio-temporal fusion network (PASTFNet). We jointly extract short- and long-range spatial relationships in spatial branch. Inspired by the composite architecture of the convolutional neural network (CNN) and long short-term memory (LSTM) for temporal modeling, we propose a novel attention-based multi-scale feature fusion network (AMFNet) to encode features of sequential frames, which can learn more expressive facial-detailed features for it implements the integrated use of attention and multi-scale feature fusion, then design an aggregation block to aggregate and acquire temporal features. At last, the features learned by the above two branches are fused to accomplish expression recognition with outstanding effect. Experiments on two MER datasets (CASMEII and SAMM) show that the PASTFNet model achieves promising ME recognition performance compared with other methods.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.