Abstract
A pasted type distributed two-dimensional fiber Bragg grating (FBG) vibration sensor has been proposed and studied in this paper. The optical fiber is directly considered as an elastomer. The two-dimensional vibration can be separated by subtraction/addition of two FBGs' center wavelength shift. The principle of the sensor as well as numerical simulation and experimental analyses are presented. Experimental results show that the resonant frequencies of the sensor x/y main vibration direction are separately 1300/20.51 Hz, which are consistent with the numerical simulation analysis result. The flat frequency range resides in 10-750 Hz and 3-12 Hz, respectively; dynamic range is 28.63 dB; in the x main vibration direction, the sensor's sensitivity is 32.84 pm/g, with linearity 3.91% in the range of 10-60 m/s(2), while in the y main vibration direction, the sensor's sensitivity is 451.3 pm/g, with linearity 1.92% in the range of 1.5-8 m/s(2). The cross sensitivity is 3.91%. Benefitting from the two dimensional sensing properties, it can be used in distributed two-dimensional vibration measurement.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.