Abstract

We study past-directed extendibility of Friedmann-Lemaître-Robertson-Walker (FLRW) and Bianchi type I spacetimes with a scale factor vanishing in the past. We give criteria for determining whether a boundary for past-directed incomplete geodesics is a parallelly propagated curvature singularity, which cannot necessarily be read off from scalar curvature invariants. It is clarified that, for incomplete FLRW spacetime to avoid the singularity, the spacetime necessarily reduces to the Milne universe or flat de Sitter universe toward the boundary. For incomplete Bianchi type I spacetime to be free of singularity, it is necessary that the spacetime asymptotically fits into the product of the extendible isotropic geometry (Milne or flat de Sitter) and flat space, or, anisotropic spacetime with specific power law scale factors. Furthermore, we investigate in detail the time-dependence of the scale factor compatible with the extendibility in both spacetimes beyond the leading order.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.