Abstract

The resilient adaptive controller design problem of a class of Itô-type Takagi–Sugeno (T–S) fuzzy stochastic systems with time-varying delay and Markovian switching is investigated. By utilizing improved matrix decoupling technique, passivity theory and stochastic Lyapunov–Krasovskii functional, LMIs-based sufficient conditions for the existence of resilient adaptive controller are provided such that the corresponding closed-loop system is almost surely asymptotically stable and robustly passive in the sense of expectation. The derived conditions can be easily solved with the help of LMI toolbox in Matlab. A simulation example is presented to illustrate the effectiveness of the proposed resilient adaptive control schemes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.