Abstract
We present a parameterized model order reduction method based on singular values and matrix interpolation. First, a fast technique using grammians is utilized to estimate the reduced order, and then common projection matrices are used to build parameterized reduced order models (ROMs). The design space is divided into cells, and a Krylov subspace is computed for each cell vertex model. The truncation of the singular values of the merged Krylov subspaces from the models located at the vertices of each cell yields a common projection matrix per design space cell. Finally, the reduced system matrices are interpolated using positive interpolation schemes to obtain a guaranteed passive parameterized ROM. Pertinent numerical results validate the proposed technique.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: IEEE Transactions on Components, Packaging and Manufacturing Technology
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.