Abstract
Purpose The purpose of this paper is to propose an interpolation-based projection framework for model reduction of quadratic-bilinear systems. The approach constructs projection matrices from the bilinear part of the original quadratic-bilinear descriptor system and uses these matrices to project the original system. Design/methodology/approach The projection matrices are constructed by viewing the bilinear system as a linear parametric system, where the input associated with the bilinear part is treated as a parameter. The advantage of this approach is that the projection matrices can be constructed reliably by using an a posteriori error bound for linear parametric systems. The use of the error bound allows us to select a good choice of interpolation points and parameter samples for the construction of the projection matrices by using a greedy-type framework. Findings The results are compared with the standard quadratic-bilinear projection methods and it is observed that the approximations through the proposed method are comparable to the standard method but at a lower computational cost (offline time). Originality/value In addition to the proposed model order reduction framework, the authors extend the one-sided moment matching parametric model order reduction (PMOR) method to a two-sided method that doubles the number of moments matched in the PMOR method.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.