Abstract

To simulate the complex human walking motion accurately, a suitable biped model has to be proposed that can significantly translate the compliance of biological structures. In this way, the simplest passive walking model is often used as a standard benchmark for making the bipedal locomotion so natural and energy efficient. This paper is devoted to a presentation of the application of internal damping mechanism to the mathematical description of the simplest passive walking model with flexible legs. This feature can be taken into account by using the viscoelastic legs, which are constituted by the Kelvin–Voigt rheological model. Then, the update of the impulsive hybrid nonlinear dynamics of the simplest passive walker is obtained based on the Euler–Bernoulli’s beam theory and using a combination of Lagrange mechanics and the assumed mode method, along with the precise boundary conditions. The main goal of this study is to develop a numerical procedure based on the new definition of the step function for enforcing the biped start walking from stable condition and walking continuously. In our previous work, it was shown that the period-one gait cycle can be produced by adding the proportional damping model with high damping ratio to the elastic legs. The present paper overcomes the practical limitations of this damping model and similarly demonstrates the stable period-one gait cycles for the viscoelastic legs. The study of the influence of various system parameters is carried out through bifurcation diagrams, highlighting the region of stable period-one gait cycles. Numerical simulations clearly prove that the overall effect of viscoelastic leg on the passive walking is efficient enough from the viewpoint of stability and energy dissipation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.