Abstract

Since modern transport aircraft cruise at transonic speeds, shock buffet alleviation is one indispensable challenge that civil transport research needs to be addressed. Indeed, in the transonic flow regime shock-induced separation and transonic buffet compromise the flight envelope of an aircraft, and therefore its operational safety and structural integrity. One possible solution is to control and delay the boundary layer separation. The aim of this work was to study whether sub-boundary layer scale period roughness, which locally increases the boundary layer displacement thickness, can act as a virtual shock bump, with aim of bifurcating the foot of the shock wave to reduce the shock’s adverse effect on the boundary layer in the same way as solid shock bumps are known to act. This passive approach can then enhance the buffet margin, consequently extending the safe flight envelope. An experimental investigation was performed, applying this passive technique on a wind tunnel wall bump model which simulated the flow over the upper surface of an aerofoil. The results, in terms of surface pressure distribution and corresponding shadowgraph flow visualisation, showed that such periodic roughness can, indeed, bifurcate the shock wave and delay shock-induced separations, depending on the orientation of the roughness and its periodicity. A virtual shock bump effect can be produced using the displacement effect of periodic sub-boundary layer scale roughness.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.