Abstract
We study targeted energy transfers (TETs) and nonlinear modal interactions attachments occurring in the dynamics of a thin cantilever plate on an elastic foundation with strongly nonlinear lightweight attachments of different configurations in a more complicated system towards industrial applications. We examine two types of shock excitations that excite a subset of plate modes, and systematically study, nonlinear modal interactions and passive broadband targeted energy transfer phenomena occurring between the plate and the attachments. The following attachment configurations are considered: (i) a single ungrounded, strongly (essentially) nonlinear single-degree-of-freedom (SDOF) attachment—termed nonlinear energy sink (NES); (ii) a set of two SDOF NESs attached at different points of the plate; and (iii) a single multi-degree-of-freedom (MDOF) NES with multiple essential stiffness nonlinearities. We perform parametric studies by varying the parameters and locations of the NESs, in order to optimize passive TETs from the plate modes to the attachments, and we showed that the optimal position for the NES attachments are at the antinodes of the linear modes of the plate. The parametric study of the damping coefficient of the SDOF NES showed that TETs decreasing with lower values of the coefficient and moreover we showed that the threshold of maximum energy level of the system with strong TETs occured in discrete models is by far beyond the limits of the engineering design of the continua. We examine in detail the underlying dynamical mechanisms influencing TETs by means of empirical mode decomposition (EMD) in combination with wavelet transforms. This integrated approach enables us to systematically study the strong modal interactions occurring between the essentially nonlinear NESs and different plate modes, and to detect the dominant resonance captures between the plate modes and the NESs that cause the observed TETs. Moreover, we perform comparative studies of the performance of different types of NESs and of the linear tuned mass dampers (TMDs) attached to the plate instead of the NESs. Finally, the efficacy of using this type of essentially nonlinear attachments as passive absorbers of broadband vibration energy is discussed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.