Abstract

An in situ passive sampling and gas chromatographic protocol was developed for analysis of the major and several minor fixed gases (He, Ne, H2, N2, O2, CO, CH4, CO2, and N2O) in groundwater. Using argon carrier gas, a HayeSep DB porous polymer phase, and sequential thermal conductivity and reductive gas detectors, the protocol achieved sufficient separation and sensitivity to measure the mixing ratio of all these gases in a single 0.5 mL gas sample collected in situ, stored, transported, and injected using a gastight syringe. Within 4 days of immersion in groundwater, the simple passive in situ sampler, whether initially filled with He or air, attained an equivalent and constant mixing ratio for five of the seven detected gases. The abundant mixing ratio of N2O, averaging 2.6%, indicated that significant denitrification is likely ongoing within groundwater contaminated with uranium, acidity, nitrate, and organic carbon from a group of four closed radioactive wastewater seepage ponds at the Oak Ridge Field Research Center. Over 1000 passive gas samples from 12 monitoring wells averaged 56% CO2, 32.4% N2, 2.6% O2, 2.6% N2O, 0.21% CH4, 0.093% H2, and 0.025% CO with an average recovery of 95 +/- 14% of the injected gas volume.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call