Abstract

A simple in-situ passive dissolved gas groundwater sampler, comprised of a short length of silicone tubing attached to a gastight or other syringe, was adapted and tested for in-situ collection of equilibrium gas samples. Sampler retrieval after several days of immersion in groundwater allowed the direct injection of the sample onto a gas chromatograph (GC), simplifying field collection and sample handling over the commonly used "bubble stripping" method for H2 analyses. A GC was modified by sequencing a thermal conductivity (TC) detector followed by a reductive gas (RG) detector so that linear calibration of H2 over the range 0.2-200,000 ppmv was attained using a 0.5-mL gas sample; inclusion of the TC detector allowed the simultaneous quantification of other fixed gases (O2, CO2, He, and Ne) to which the RG detector was not responsive. Uptake kinetics for H2 and He indicated that the passive sampler reached equilibrium within 12 h of immersion in water. Field testing of these passive samplers revealed unusually large equilibrium gas-phase H2 concentrations in groundwater, ranging from 0.1 to 13.9%, by volume, in 11 monitoring wells surrounding four former radiological wastewater disposal ponds at the Y-12 plant in Oak Ridge, Tennessee.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call