Abstract

Single-use biopharmaceutical manufacturing requires monitoring of critical manufacturing parameters. We have developed an approach for passive radio-frequency identification (RFID)-based sensing that converts ubiquitous passive 13.56 MHz RFID tags into inductively coupled sensors. We combine several measured parameters from the resonant sensor antenna with multivariate data analysis and deliver unique capability of multiparameter sensing and rejection of environmental interferences with a single sensor. We demonstrate here the integration of these RFID sensors into single-use biopharmaceutical manufacturing components. We have tested these sensors for over 500 h for measurements of temperature and solution conductivity with the accuracy of 0.1°C (32-48°C range) and accuracy of 0.3-2.9 mS/cm (0.5-230 mS/cm range). We further demonstrate simultaneous temperature and conductivity measurements with an individual RFID sensor with the accuracy of 0.2°C (5-60°C range) and accuracy of 0.9 mS/cm (0.5-183 mS/cm range). Developed RFID sensors provide several important features previously unavailable from other single-use sensing technologies such as the same sensor platform for measurements of physical, chemical, and biological parameters; multi-parameter monitoring with individual sensors; and simultaneous digital identification.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.