Abstract

Single-use biopharmaceutical manufacturing requires monitoring of critical manufacturing parameters. However, the lack of reliable single-use sensors prevents the biopharmaceutical industry from fully embracing single-use biomanufacturing processes. We report here an approach for passive radio-frequency identification (RFID)-based sensing that does not rely on costly proprietary RFID memory chips with an analog input but rather implement ubiquitous passive 13.56 MHz RFID tags as inductively coupled sensors with 16-bit resolution provided by a sensor reader. Developed RFID sensors combine several measured parameters from the resonant sensor antenna with multivariate data analysis and deliver unique capability of multiparameter sensing and rejection of environmental interferences with a single sensor. In this study we are integrating these RFID sensors into single-use biopharmaceutical manufacturing components such as buffer bags. Performance of these sensors for simultaneous solution conductivity and temperature sensing is discussed.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call