Abstract

AbstractA numerical simulation is performed to investigate a passive jet flow control method for suppressing the alternating vortex shedding from the circular cylinder. A hollow pipe is tightly set on the circular cylinder, and two arrangement cases for the holes are employed: one is a five-hole case, which means that five suction holes are set near the front stagnation point and five jet holes set near the rear stagnation point of the cylinder. The other is the full-hole case, which means the holes are equidistantly arranged on the hollow pipe. The incoming flow enters the suction holes and jets into the near wake from the outlet holes. Consequently, the wake vortex shedding alternately is manipulated or destroyed. The numerical simulations of baseline cases (without control) are first conducted to verify the reliability of the numerical model. Next, the two controlled cases (five hole-case and full-hole case) are investigated at the Reynolds number R=103−105. It is found that a remarkable mitigation for...

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call