Abstract

In this study, passive and active flow control methods were used together to manipulate the flow around a circular cylinder. The experiments were conducted in a wind tunnel for the Reynolds number range of 4000 and 10000 based on the diameter of the circular cylinder (D). A splitter plate was used as passive flow control device and its length was chosen to be about 3.75D. Plasma actuators were placed on the circular cylinder at a position of ±90° as an active flow control device. Combining the active and passive flow control methods, a greater reduction of the drag coefficient was achieved compared to that of the cases when using these methods separately. For Reynolds numbers of 5000 and 10000, the hybrid method gives a reduction in drag of 48% and 45%, respectively. The velocity measurements were carried out by using the hot-wire anemometry and velocity profiles were obtained in the wake region. The flow was visualized by using a smoke wire method. The results revealed that the wake region of the circular cylinder with plasma actuator and splitter plate has a narrower width than the plain cylinder and with splitter plate. Also, it can be seen from spectral analysis that the vortex shedding frequency was suppressed significantly by usage of the hybrid flow control method was used.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call