Abstract
ABSTRACTThe previous studies suggested that some subpopulations of T lymphocytes against central nervous system (CNS) antigens, such as myelin basic protein (MBP), are neuroprotective. But there were few reports about the effect of these T cells on axon regeneration. In this study, the neonatally thymectomied (Tx) adult rats which contain few T lymphocytes were subjected to spinal cord hemisection and then passively immunized with MBP-activated T cells (MBP-T). The regeneration and dieback of transected axons of cortico-spinal tract (CST) were detected by biotin dextran amine (BDA) tracing. The behavioral assessments were performed using the Basso, Beattie, and Bresnahan locomotor rating scale. We found that passive transferring of MBP-T could attenuate axonal dieback. However, no significant axon regeneration and behavioral differences were observed among the normal, Tx and sham-Tx (sTx) rats with or without MBP-T passive immunization. These results indicate that passive transferring of MBP-T cells can attenuate axonal dieback and promote neuroprotection following spinal cord injury (SCI), but may not promote axon regeneration.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have