Abstract
The two important considerations in the design of a heat exchanger are — the total heat transfer rate and the allowable pressure drop. The allowable pressure drop defines the maximum flow rate through a single microchannel and economics drives the design towards this flow rate. Typically the flow rate in the microchannel is in laminar flow regime (Re < 2000) due to smaller hydraulic diameter. The laminar flow heat transfer in a smooth microchannel is limited by the boundary layer thickness. Commonly the heat transfer rate is enhanced by passively disrupting the laminar boundary layer using protrusions or depressions in the channel walls. More often these methods are best applicable at small range of Reynolds number where the heat transfer rate enhancement is more than the pressure drop increase and break down as the flow rate is changed outside the range. The benefit of a flow disruption method can be reaped only if it provides higher heat transfer enhancement than the increase in the pressure drop at the working flow rates in the microchannel. A heat transfer efficient microchannel design has been developed using wall features that create stable disrupted flow and break the laminar boundary layer in a microchannel over a wide range of flow rates. The paper experimentally investigates the developed design for the heat transfer enhancement and pressure drop increase compared to a smooth wall microchannel. A simple microchannel device was designed and fabricated with and without wall features. The experiments with single gas phase fluid showed promising results with the developed wall feature design as the heat transfer rate increase was 20% to 80% more than the pressure drop increase in the laminar regime. The wall feature design was an important variable to affect the magnitude of performance enhancement in different flow regime. A general criterion was developed to judge the efficacy of wall feature design that can be used during a microchannel heat exchanger design.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have