Abstract

Many bridge abutments suffered severe damages due to pounding of superstructure elements of the bridge during seismic excitation. Collision of the girder is resisted by passive pressures mobilised in the backfill soils. Seismic load on the bridge structure causes the bridge abutments to undergo lateral translation (Δ) and rotation. The present study focuses on the evaluation of passive force (Pp) developed in the reinforced backfills of the geosynthetic-reinforced soil (GRS) bridge abutments. The GRS abutments of nine configurations with three different geogrid spacing and three different geogrid lengths are modelled using finite element (FE) approach under lateral push. Hypoplastic soil constitutive model with inter-granular strain concept is used to model the soil behaviour. User material subroutine, VUMAT is developed to simulate the soil behaviour in Abaqus. The maximum passive resistance (Pp,ult) increases by 12% in the GRS abutments with closer geogrid spacing.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.