Abstract

This study focuses on the performance of the nonlinear energy sink (NES) in passive controlling the cantilever cylinder vibrations subjected to the external fluid flow. The nonlinear differential equations of motion are obtained by considering the large strain-displacement relation and viscoelastic behavior. Wake oscillation in fluid-structure interaction is modeled based on the Van der Pol wake oscillator model with is the classic acceleration coupling between the cross-flow motion and wake. Based on the Von Karman strain-displacement relation, and Euler-Bernoulli beam theory, the nonlinear vibration equations which are coupled with attached NES motion are obtained using Newton's second law, and discretized by applying the Galerkin method. The fluid flow velocity and nonlinear stiffness, damping, and mass of the NES are studied to determine their effects on the vibration response of the system. The present study comprehensively evaluates the effects of adding a NES on the lock-in phenomenon and maximum oscillating amplitudes of a cantilever cylinder, and guides to determine the best design of NES for significant fluid-induced vibration mitigation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call