Abstract

The open-circuit voltage (Voc ) of perovskite solar cells is limited by non-radiative recombination at perovskite/carrier transport layer (CTL) interfaces. 2D perovskite post-treatments offer a means to passivate the top interface; whereas, accessing and passivating the buried interface underneath the perovskite film requires new material synthesis strategies. It is posited that perovskite ink containing species that bind strongly to substrates can spontaneously form a passivating layer with the bottom CTL. The concept using organic spacer cations with rich NH2 groups is implemented, where readily available hydrogens have large binding affinity to under-coordinated oxygens on the metal oxide substrate surface, inducing preferential crystallization of a thin 2D layer at the buried interface. The passivation effect of this 2D layer is examined using steady-state and time-resolved photoluminescence spectroscopy: the 2D interlayer suppresses non-radiative recombination at the buried perovskite/CTL interface, leading to a 72% reduction in surface recombination velocity. This strategy enables a 65mV increase in Voc for NiOx based p-i-n devices, and a 100mV increase in Voc for SnO2 -based n-i-p devices. Inverted solar cells with 20.1% power conversion efficiency (PCE) for 1.70eV and 22.9% PCE for 1.55eV bandgap perovskites are demonstrated.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call