Abstract
Magnaporthe oryzae is a devastating fungal pathogen that causes the rice blast disease worldwide. The post-translational modification of ADP-ribosylation holds significant importance in various fundamental biological processes. However, the specific function of this modification in M. oryzae remains unknown. This study revealed that Poly(ADP-ribosyl)ation (PARylation) executes a critical function in M. oryzae. M. oryzae Poly(ADP-ribose) polymerase 1 (PARP1) exhibits robust PARylation activity. Disruption of PARylation by PARP1 knock-out or chemical inhibition reveals its involvement in M. oryzae virulence, particularly in appressorium formation. Furthermore, we identified two M. oryzae 14-3-3 proteins, GRF1 and GRF2, as substrates of PARP1. Deletion of GRF1 or GRF2 results in delayed and dysfunctional appressorium, diminished plant penetration, and reduced virulence of the fungus. Biochemical and genetic evidence suggest that PARylation of 14-3-3s is essential for its function in M. oryzae virulence. Moreover, PARylation regulates 14-3-3 dimerization and is required for the activation of the mitogen-activated protein kinases (MAPKs), Pmk1 and Mps1. GRF1 interacts with both Mst7 and Pmk1, and bridges their interaction in a PARylation-dependent manner. This study unveils a distinctive mechanism that PARylation of 14-3-3 proteins controls appressorium formation through MAPK activation, and could facilitate the development of new strategies of rice blast disease control.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have