Abstract

Parvalbumin-expressing (PV+) interneurons represent one of the most abundant subclasses of cortical interneurons. Owing to their specific electrophysiological and synaptic properties, PV+ interneurons are essential for gating and pacing the activity of excitatory neurons. In particular, PV+ interneurons are critically involved in generating and maintaining cortical rhythms in the gamma frequency, which are essential for complex cognitive functions. Deficits in PV+ interneurons have been frequently reported in postmortem studies of schizophrenia patients, and alterations in gamma oscillations are a prominent electrophysiological feature of the disease. Here, I summarise the main features of PV+ interneurons and review clinical and preclinical studies linking the developmental dysfunction of cortical PV+ interneurons with the pathophysiology of schizophrenia.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.