Abstract

Metal partitioning depends on the physical–chemical conditions of a system and can be affected by anthropogenic inputs. In this study, the authors report the results of trace metal partitioning between particulate (>1.2 μm), colloidal (1.2 μm–1 kDa) and truly dissolved (<1 kDa) fractions in the polluted section of the Upper Vistula River compared with the non-polluted headwaters. It was found that the salt input in the Vistula River induced a decrease of colloid concentration and the increase of suspended particulate matter. Compared with upstream from the polluted section, the metal concentrations (Co, Cu, Cr, Mn and Zn) in the colloidal fraction were lower. It was mainly due to the rapid colloid coagulation at increased salinity, the competition with ligands and major ions (Ca and Mg) and the weak mobility of metals associated with particles at the pollution sources.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.