Abstract
As a result of complex physical, chemical and biological processes, a major fraction of the trace metals introduced into the aquatic environment is found associated with the bottom sediments, distributed among a variety of physico-chemical forms. As these different metal forms will generally exhibit different chemical reactivities, the measurement of the total concentration of a particular metal provides little indication of potential interactions with the abiotic or biotic components present in the environment. In principle, the partitioning of sediment-bound metals could be determined both by thermodynamic calculations (provided equilibrium conditions prevail) and by experimental techniques. The modelling of sediment-bound metals is far less advanced than is that of dissolved species, primarily because the thermodynamic data needed for handling sediment-interstitial water systems are not yet available. The partitioning of a metal among various fractions obtained by experimental techniques (e. g., sequential extraction procedures) is necessarily operationally defined. These methods have, however, provided significant insight into the physico-chemical factors influencing the bioavailability of particulate trace metals; some of these factors are discussed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.