Abstract
Although there is much evidence that green hydra digestive cells control cell division of theirChlorellasymbionts, so that the symbionts divide only at host cell division, it is not clear how the population size of symbionts (numbers per cell) is regulated. In constant culture conditions the mean number of symbionts per cell also remains constant, but with a very large variance about the mean. The way in which symbionts are partitioned at host cell division appears to account for that variation. By counting numbers ofChlorellain daughter cells at late telophase it was found that partitioning ofChlorellasymbionts was not symmetrical, but at random, closely following that predicted by the binomial distribution if it is assumed that each symbiont had an equal probability of entering either host daughter cell. A better fit to the predicted distribution was obtained from observations of partition in digestive cells from excised regenerating peduncles than in those from recently fed gastric regions, possibly because in the former, algae have completed their division before the host cell divides, while in the latter algal and host cell division takes place at the same time. There was only a small effect of differences in daughter cell volume on numbers of symbionts received, but comparison of variance and coefficient of variation of numbers of algae in mother (post-algal division, pre-partition) and daughter telophase digestive cells (pre-division, post-partition) suggested that algal division at host mitosis was density dependent. Random partitioning of algae at host cell telophase would account for the wide variation in numbers of algae per cell, and compensatory density-dependent algal division at the next host cell mitosis would ensure stability of the mean algal population.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Philosophical Transactions of the Royal Society of London. Series B: Biological Sciences
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.