Abstract
We present EASEE (Edge Advertisements into Snapshots using Evolving Expectations) for partitioning streaming communication data into static graph snapshots. Given streaming communication events (A talks to B), EASEE identifies when events suffice for a static graph (a <italic xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">snapshot</i> ). EASEE uses combinatorial statistical models to adaptively find when a snapshot is stable, while watching for significant data shifts – indicating a new snapshot should begin. If snapshots are not found carefully, they poorly represent the underlying data – and downstream graph analytics fail: We show a community detection example. We demonstrate EASEE's strengths against several real-world datasets, and its accuracy against known-answer synthetic datasets. Synthetic datasets' results show that (1) EASEE finds known-answer data shifts very quickly; and (2) ignoring these shifts drastically affects analytics on resulting snapshots. We show that previous work misses these shifts. Further, we evaluate EASEE against seven real-world datasets (330 K to 2.5B events), and find snapshot-over-time behaviors missed by previous works. Finally, we show that the resulting snapshots' measured properties (e.g., graph density) are altered by how snapshots are identified from the communication event stream. In particular, EASEE's snapshots do not generally “densify” over time, contradicting previous influential results that used simpler partitioning methods.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: IEEE Transactions on Network Science and Engineering
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.