Abstract

AbstractIn the last years, classification societies have announced several specifications regarding the limitation of the noise level of ships. Accordingly, the prediction of the acoustic signature of cavitating propellers, which are the main source for noise generation, has attracted a lot of interest. For an accurate numerical simulation of the underlying physics, the deformation of the propeller has to be taken into account, which results in a fluid‐structure interaction (FSI) problem.In order to utilize different discretization methods for the individual sub‐problems, we apply a partitioned solution approach. This makes it possible to use a finite element solver for the structural problem, while a boundary element solver is used for the fluid problem. From the solution of the FSI problem, the acoustic pressure in the far field is obtained using the Ffowcs William‐Hawking equation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.