Abstract

A microscopic theory of current partition in fractional quantum Hall liquids, described by chiral Luttinger liquids, is developed to compute the noise correlations, using the Keldysh technique. In this Hanbury-Brown and Twiss geometry, at Laughlin filling factors nu = 1/3, the real time noise correlator exhibits oscillations which persist over larger time scales than that of an uncorrelated Hall fluid. The zero frequency noise correlations are negative at filling factor 1/3 as for bare electrons (antibunching), but are strongly reduced in amplitude. These correlations become positive (bunching) for nu < or = 1/5, suggesting a tendency towards bosonic behavior.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call