Abstract

In view of the current lack of reliable partition coefficients for organic compounds with carbohydrates (K(ch)), carefully measured values with cellulose and starch, the two major forms of carbohydrates, are provided for a wide range of compounds: short-chain chlorinated hydrocarbons, halogenated benzenes, alkyl benzenes, polycyclic aromatic hydrocarbons (PAHs), polychlorinated biphenyls, and organochlorine pesticides. To ensure the accuracy of the K(ch) data, solute concentrations in both water and carbohydrate phases are measured by direct solvent extraction of the samples. For a given compound, the observed partition coefficient with cellulose (K(cl)) is virtually the same as that with starch (K(st)). This finding expedites the evaluation of organic contamination with different forms of carbohydrates. The presently determined K(ch) values of 13 PAHs are substantially lower (by 3-66 times) than the literature data; the latter are suspect as they were obtained with (i) presumably impure carbohydrate samples or (ii) indirectly measured equilibrium solute concentrations in carbohydrate and water phases. Although the K(ch) values are generally considerably lower than the respective K(ow) (octanol-water) or K(lipid) (lipid-water), accurate K(ch) data are duly required to accurately estimate the contamination of carbohydrates by organic compounds because of the abundance of carbohydrates over lipids in crops and plants. To overcome the current lack of reliable K(ch) data for organic compounds, a close correlation of log K(ch) with log K(ow) has been established for predicting the unavailable K(ch) data for low-polarity compounds.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.