Abstract
Partition coefficients for the rare earth elements (REE) Ce, Sm and Tm between coexisting garnets and hydrous liquids have been determined at high pressure and temperatures (30 kbar and 1300 and 1500°C). Two synthetic systems were studied, Mg3Al2Si3O12-H2O and Ca3Al2Si3O12-H2O, in addition to a natural pyrope-bearing system. Deviations from Henry's Law behaviour occur at geologically relevant REE concentrations. At concentrations < 3 ppm Ce, < 12 ppm Sm, < 80 ppm Tm in pyrope and < 100 ppm Ce, < 250 ppm Sm, < 1000 ppm Tm in grossular (at 30 kbar and 1300°C), Dgarnet liquidREE increases as the REE concentration in the garnet decreases. At higher concentrations, DREE is constant. Dgrossular liquidREE also constant when the garnet contains less than about 2 ppm Sm or Tm. The REE concentration at which DREE becomes constant increases with increasing temperature, decreasing REE ionic radius and increasing Ca content of the garnet. Partitioning behaviour of Ce, Sm and Tm between a natural pyrope-rich garnet and hydrous liquid is analogous to that in the synthetic systems and substantiates the substitution model proposed by Harrison and Wood (1980). Values of DREEgarnet/liquid for which Henry's Law is obeyed are systematically higher for grossular than for pyrope (Dpyrope/liquid = 0.067(Ce), 0.108(Sm), 0.155(Tm) and Dgrossular/Liquid = 0.65(Ce), 0.75(Sm), 4.55(Tm). The implications of non-Henry's Law partitioning of REE for models of basalt petrogenesis involving garnet are far-ranging. Deviations from Henry's Law permit refinements to be made to calculated REE abundances once basic model parameters have been defined.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have