Abstract

The macroscopic mechanical properties of a particulate composite under uniaxial tensile loading have been estimated. The composite studied consisted of a polymer matrix in a rubbery state (polymethylmethacrylate – PMMA) and alumina-based particles (Al2O3). A numerical modeling by using the finite-element method (FEM) was performed to determine the stress–strain behavior of the particulate composite. The numerical simulation took into account the hyperelastic properties of the cross-linked polymer matrix, which was described by the three-parameter Mooney–Rivlin material model. A representative volume element (RVE) was chosen for FE analyses to model the microstructure of the composite. Various compositions of particles and their different shape and orientation were considered in the study. Various directions of loading of the RVE were also investigated. A progressive damage model was implemented into the numerical models. The mechanical characteristics obtained from computations, which included the damage model, were compared with experimental data, and a good agreement has been found to exist between them. The procedure presented can be used for estimating the mechanical properties of new particulate composites with a cross-linked polymer matrix, and it also contributes to the clarification of damage development and failure in composites of the type studied.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.