Abstract

The main focus of the present paper is the estimation of the macroscopic stress–strain behavior of a particulate composite. A composite with a cross-linked polymer matrix in a rubbery state filled with an alumina-based mineral filler is investigated by means of the finite-element method. The hyperelastic material behavior of the matrix is described by the Mooney–Rivlin material model. Numerical models on the basis of unit cells are developed. The existence of a discontinuity (breaking) in the matrix at higher loading levels is taken into account to obtain a more accurate estimate for the stress–strain behavior of the particulate composite investigated. The numerical results obtained are compared with an experimental stress–strain curve, and a good agreement is found to exist. The paper can contribute to a better understanding of the behavior and failure of particulate composites with a polymer matrix.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.