Abstract

Magnetic nanoparticles have been of great scientific interest because of their possible industrial and biomedical applications. The magnetic iron oxide was synthesized by the co precipitation of alkaline hydrolysis of ions Fe2+ and Fe3+ in aqueous system. The coated particles were obtained by heating (50 and 250 °C) mixed magnetic iron oxide and polydimethylsiloxane oil for 30 min obtaining magnetic dust particles with hydrophobic behavior. These were used to learn the dragging effects and removal of nonpolar organic compound in aqueous systems. The samples were characterized by Fourier transform infrared spectroscopy (FTIR), X-ray powder diffraction (XRD), chemical analysis by potenciometric titration, thermogravimetric analysis (TGA), transmission electron microscopy (TEM), vibrating sample magnetometry (VSM), contact angle measurement and Mössbauer spectroscopy. The diffractogram of X-ray presented peaks that were assigned to presence of spinel structure maghemite and magnetite with medium sized crystallites of 10.95 nm for the polymeric coated magnetic iron oxide, confirmed by TEM, with superparamagnetic character, also confirmed by VSM. The infrared spectrum showed absorption band at 570 cm−1 characteristic of the Fe-O bonding in inverted spinel structure and the absorption bands in 1263, 1105, 1025 and 800 cm−1 indicating the presence of PDMS on the magnetic iron oxide particles. Thermogravimetric analysis has been used to estimate the sample thermal stability of polymeric material (9.7 ± 4) % on the inorganic matrices. Contact angle measurement of the coated samples at 250 °C presented a better nonpolar character in comparison to the coated samples at 50 °C. The samples at room temperature (25 °C) presented the phases of magnetite and maghemite which were also confirmed by Mössbauer spectroscopy. It was possible to obtain iron oxides particles coated with PDMS, with hydrophobic and magnetic properties, which slide over the water surface when magnetic field is applied. This character was used successfully, by testing, for removal of small fraction vegetable oil on the water surface.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.