Abstract

Tectona grandis wood presents decent dimensional stability as well as highly suitable physical and mechanical properties. These characteristics have encouraged the intense usage of this species, which also includes the reuse of wood processing waste for panel production. Using teak wood waste, this study aims to manufacture and evaluate heat-pressed particleboards at 5 MPa and 100 °C, by being glued with castor oil-based polyurethane resin at proportions of 10% for the homogeneous boards and 12% for the heterogeneous solutions. Single-layer (homogeneous) boards were compared with three-layer particleboard specimens (heterogeneous) having the finer particles in the outer layers. The basic density, moisture content, modulus of rupture and modulus of elasticity in the static bending and perpendicular tensile, water absorption, and thickness swelling after 24 h were evaluated to support this comparative study. All the manufactured particleboards met the standardized requirements of performance, thus being very feasible for usage as non-structural boards. When the two different compositions were analyzed, a considerably better performance of the three-layered particleboards was identified when compared to the homogeneous panels.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call