Abstract

PurposeParticle velocity is a critical factor that can affect the deposition quality in manufacturing processes involving the use of a laser source and a powder‐particle delivery nozzle. The purpose of this paper is to propose a method to detect the speed and trajectory of particles during a laser deposition process.Design/methodology/approachA low‐power laser light sheet technique is used to illuminate particles emerging from a custom designed powder delivery nozzle. Light scattered by the particles is detected by a high‐speed camera. Image processing on the acquired images was performed using both edge detection and Hough transform algorithms.FindingsThe experimental data were analyzed and used to estimate particle velocity, trajectory and the velocity profile at the nozzle exit. The results have demonstrated that the particle trajectory remains linear between the nozzle exit and the deposition plate and that the particle velocity can be considered a constant.Originality/valueThe use of low‐power laser light sheet illumination facilitates the detection of isolated particle streaks even in high‐powder flow rate condition. Identification of particle streaks in three subsequent images ensures that particle velocity vectors are in the plane of illumination, and also offers the potential to evaluate in a single measurement both velocity and particle size based on the observed scattered characteristics. The method provides a useful simple tool to investigate particle dynamics in a rapid prototyping application as well as other research fields involving the use of powder delivery nozzles.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.