Abstract

Purpose This study aims to design and implement a multimaterial system for printing multifunctional specimens suitable for various sectors, with a particular focus on biomedical applications such as addressing mandibular bone loss. Design/methodology/approach To enhance both the mechanical and biological properties of scaffolds, an automatic multimaterial setup using vat photopolymerization was developed. This setup features a linear system with two resin vats and one ultrasonic cleaning tank, facilitating the integration of diverse materials and structures to optimize scaffold composition. Such versatility allows for the simultaneous achievement of various characteristics in scaffold design. Findings The printed multimaterial scaffolds, featuring 20 Wt.% hydroxylapatite (HA) on the interior and poly-L-lactic acid (PLLA) with 1 Wt.% graphene oxide (GO) on the exterior, exhibited favorable mechanical and biological properties at the optimum postcuring and heat-treatment time. Using an edited triply periodic minimal surface (TPMS) lattice structure further enhanced these properties. Various multimaterial specimens were successfully printed and evaluated, showcasing the capability of the setup to ensure functionality, cleanliness and adequate interface bonding. Additionally, a novel Gyroid TPMS scaffold with a nominal porosity of 50% was developed and experimentally validated. Originality/value This study demonstrates the successful fabrication of multimaterial components with minimal contaminations and suitable mechanical and biological properties. By combining PLLA-HA and PLLA-GO, this innovative technique holds significant promise for enhancing the effectiveness of regenerative procedures, particularly in the realm of dentistry.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.