Abstract

This paper has adopted six daily climate variables for the eleven major locations, and heavily populated areas in Queensland, Australia obtained from Scientific Information for Land Owners (SILO) to forecast the daily electricity demand (G) obtained from the Australian Energy Market Operator (AEMO). Optimal data-driven technique based on a support vector regression (SVR) model was applied in this study for the G forecasting, where the model’s parameters were selected using a particle swarm optimization (PSO) algorithm. The performance of PSO–SVR was compared with multivariate adaptive regression spline (MARS) and the traditional model of SVR. The results showed that the PSO–SVR model outperformed MARS and SVR.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.