Abstract

In this paper, an optimal design to minimize the cost, mass and volume of the fuel cell (FC) and supercapacitor (SC) in a fuel cell hybrid electric vehicle is presented. Because of the hybrid powertrain, component sizing significantly affects vehicle performance, cost and fuel economy. Hence, during sizing, various design and control constraints should also be satisfied simultaneously. In this research, there are two optimization techniques have tested to achieve optimal design of the powertrain. These are Genetic Algorithm (GA) and Particle Swarm Optimization (PSO). The proposed schemes have been simulated by MATLAB/ SIMULINK. Simulation results have demonstrated that the optimal sizing of the powertrain components has been improved when the PSO is applied, which means high-performance operation for FCHEV.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.