Abstract
Vehicular emissions of Particulate Matter (PM) will change under different driving conditions and as higher levels of alternative fuels are blended with gasoline. In particular, the chemical composition and water-soluble components of PM below 2.5μm can be modified. In this study, three light-duty Port-Fuel Injection (PFI) and two Gasoline Direct Injection (GDI) vehicles were tested. All vehicles were tested over the Federal Test Procedure (FTP), Unified Cycle (UC), and at steady-state speeds (30, 50, and 70mph) while operating on various ethanol and iso-butanol gasoline blends. The chemical and physical properties of the aerosol composition were measured via online/offline methods. Black carbon (BC), water-soluble organic carbon (WSOC), and droplet surface tension were measured. Water-Insoluble Mass (WIM) fractions were estimated from online size distribution measurements. Results show that the PFI vehicles, fuel composition and testing conditions (transient versus steady-state) impact PM emissions. GDI vehicles emit more PM and twice as much BC compared to PFI vehicles. Older PFI vehicles also produce more particles and BC emissions than newer vehicles. For three of the five vehicles, as speed increased, the WIM fraction increased. The results show vehicle operating conditions (steady-state or transient) can greatly impact the average composition of particles regardless of fuel composition.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.