Abstract
The DPF regeneration is crucial for reducing backpressure, minimizing negative impacts on engine power and fuel economy, but the changes in particulate emission characteristics it brings are worth studying. In this study, the influence of DPFs with different soot loadings on exhaust back pressure and particle emission characteristics, as well as the particle number emission, particle size distribution, and thermal field distribution characteristics during regeneration was investigated based on engine bench test. Results reveal that the exhaust back pressure increases linearly with the engine speed, as well as the soot loading. The increase of DPF soot loading leads to a considerable increase in the reduction efficiency of particle number (PN) and particulate matter emissions, especially for the accumulation mode particles. Moreover, the performance in reducing nucleation mode particles is markedly better than that of accumulation mode ones, and this effect is greatly influenced by the engine operating conditions. At the beginning of DPF regeneration, the PN concentration increases sharply, especially the nucleation mode particles. After regeneration, the PN emissions decrease by two orders of magnitude. During regeneration, the particle size distribution exhibits a unimodal distribution, with the peak value increasing considerably and shifting toward smaller particle sizes. After regeneration, the particle size of the PN peak value slightly decreases and markedly shifts toward larger sizes, the accumulation mode particle concentration increases by 7.2 times, and the nucleation mode particle concentration increases by 2.6 times. Before the DPF regeneration, the axial temperature gradually decreases along the direction of the airflow, and the radial temperature gradually decreases from the center to the edge. During regeneration, the highest temperature occurs in the center of the DPF cross-section, whereas the temperature peak at the outlet interface occurs at the middle position of the DPF. The findings of this paper can provide scientific references to formulation and optimization of DPF regeneration strategies.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.