Abstract

In this study, the effect of new and used catalyzed diesel particulate filter (CDPF) with different catalyst loadings on the particulate emissions including the particle mass (PM), particle number (PN), particle size distribution (PSD) and geometric mean diameter (GMD) from a diesel vehicle were investigated based on a heavy chassis dynamometer. Results showed that more than 97.9% of the PN and 95.4% of the PM were reduced by the CDPF, and the reduction efficiency was enhanced by the catalyst loading. After using the CDPF, the PSD transformed from bimodal to trimodal with the peak shifting towards smaller particle size, more nucleation mode particles were reduced compared with accumulation mode ones, but the reduction effect on the accumulation mode particles was more significantly influenced by the catalyst loading. Notably, the CDPF increased the accumulation mode particles proportion, producing a larger GMD. For the used CDPF, its reduction effect on the particulate emissions enhanced, especially for the PM in accumulation mode. The PSD returned to bimodal, but the peak at accumulation mode began to be higher than that at nucleation mode, illustrating that more nucleation mode particles was removed. The aging of the CDPF resulted in greater effect on the PN-based PSD than that of PM-based PSD, but the effect of catalyst loading on the PN and PM emission factors was weakened. The used CDPF further increased the GMD, and the effect of catalyst loading on the GMD was strengthened, a higher catalyst loading led to a reduction in the GMD.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call