Abstract
This study determines the particle emissions from five heated tobacco products (HTPs). An aethalometer is used for the determination of black carbon (BC) and an aerosol monitor for total particulate matter (PM) concentration and also PM fractions (1, 2.5, 4, and 10 μm) in the mainstream emissions of 5 HTPs: IQOS, LIL, PULZE, ILUMA, and GLO. Fifteen different flavors were used, five sticks per flavor, which were smoked using a peristaltic pump under both ISO and Canadian smoking regimes. The method repeatability was determined using 15 sticks of one flavor for each brand for each smoking regime. All HTPs emit particles, and more than 99.7% of the particles emitted are smaller than 1 μm. Both BC and PM emissions show quite low repeatability. Particle emissions increase in relation to the heating temperature and the intensity smoking regime, and are depending on the flavor used. BC corresponds to a small percentage of total PM. Although HTPs are promoted as products of reduced risk compared to conventional cigarettes, high particle concentrations are detected in their emissions, depending on the smoking regime, the flavor used, and the operation parameters. PM emissions vary significantly between different brands under the ISO smoking regime, probably due to the heating temperature. In contrast, PM emissions under the Canadian smoking regime do not vary significantly between different brands. This could probably be attributed to the fact that increased puff frequency does not allow the device to cool down between puffs, resulting in an increase in PM emissions for all the brands, but not dependent on the maximum heating temperature of the device. BC emissions only consist of a very small fraction of PM and do not vary significantly between different brands under both smoking regimes.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.